Online Walking Motion Generation with Automatic Footstep Placement
نویسندگان
چکیده
The goal of this paper is to demonstrate the capacity of Model Predictive Control to generate stable walking motions without the use of predefined foot steps. Building up on well-known Model Predictive Control schemes for walking motion generation, we show that a minimal modification of these schemes allows designing an online walking motion generator which can track a given reference speed of the robot and decide automatically the foot step placement. Simulation results are proposed on the HRP-2 humanoid robot, showing a significant improvement over previous approaches.
منابع مشابه
Safety-Critical Control for Dynamical Bipedal Walking with Precise Footstep Placement
This paper presents a novel methodology to achieve dynamic walking for underactuated and hybrid dynamical bipedal robots subject to safety-critical position-based constraints. The proposed controller is based on the combination of control Barrier functions and control Lyapunov functions implemented as a state-based online quadratic program to achieve stability under input and state constraints,...
متن کاملDual-Hierarchical Control Mechanism of Interpersonal Embodied Interactions in Cooperative Walking
Interpersonal embodied interactions play a significant role as emergent functions in human development and rehabilitation. However, a framework for applying embodied interactions to “human interface systems” to support such emergent functions has not yet been suggested because the details of the motorcontrol mechanism have not yet been clarified. In this study, the interpersonal cooperative wal...
متن کاملDynamic Walking on Stepping Stones with Gait Library and Control Barrier Functions
Dynamical bipedal walking subject to precise footstep placements is crucial for navigating real world terrain with discrete footholds such as stepping stones, especially as the spacing between the stone locations significantly vary with each step. Here, we present a novel methodology that combines a gait library approach along with control Barrier functions to enforce strict constraints on foot...
متن کاملOnline Regeneration of Bipedal Walking Gait Optimizing Footstep Placement and Timing
We propose a new algorithm capable of online regeneration of walking gait patterns. The algorithm uses a nonlinear optimization technique to find step parameters that will bring the robot from the present state to a desired state. It modifies online not only the footstep positions, but also the step timing in order to maintain dynamic stability during walking. Inclusion of step time modificatio...
متن کاملFootstep parameterized motion blending using barycentric coordinates
This paper presents a real-time animation system for fully-embodied virtual humans that satisfies accurate foot placement constraints for different human walking and running styles. Our method offers a fine balance between motion fidelity and character control, and can efficiently animate over sixty agents in real time (25 FPS) and over a hundred characters at 13 FPS. Given a point cloud of rea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced Robotics
دوره 24 شماره
صفحات -
تاریخ انتشار 2010